Photonics

Image
Optics Site Image

Research in photonics at the Wyant College of Optical Sciences ranges in scope from fundamentally new tools, such as small-footprint, high-throughput multiphoton microscopes, through exceptionally high-power semiconductor lasers, to components and systems for next-generation optical networks for both the Internet and data centers, and into consumer equipment like 3-D displays. New areas are constantly explored by our nine faculty in the specialty, as photonics becomes more pervasive in our lives. Communications, displays, medicine, manufacturing and imaging are just a few applications.

The re-writable hologram of Albert Einstein shown as a 2-D figure was created with state-of-the-art technology developed by our group. Professor Masud Mansuripur, provoked considerable controversy by reminding the physics community that the commonly used Lorentz force law for charged particle motion is not relativistically invariant when applied to magnetic materials in the presence of an electric field; the suggested remedy is to return to an alternative force law proposed by Albert Einstein in 1908.

To view past updates, see the Research Updates Archive.


 

Photonics Research Updates

1) Multiplexed Quantum Repeaters Based on Dual-Species Trapped-Ion Systems

Date Published: March 1, 2022

A recent paper was published in the APS Physical Review A by the Guha lab, associated with the Center for Quantum Networks, and was selected as an Editor's Suggestion. The work was funded on the NSF Convergence Accelerator program in collaboration with University of Maryland. The paper discusses trapped-ion based quantum repeaters and was led by Wyant College Ph.D. student, Prajit Dhara, advised by Dr. Saikat Guha and co-advised by Dr. Kaushik Seshadreesan, Assistant Professor at Univ. of Pittsburg. According to the abstract, trapped ions form an advanced technology platform for quantum information processing with long qubit coherence times, high-fidelity quantum logic gates, optically active qubits, and a potential to scale up in size while preserving a high level of connectivity between qubits. These traits make them attractive not only for quantum computing, but also for quantum networking. Dedicated, special-purpose trapped-ion processors in conjunction with suitable interconnecting hardware can be used to form quantum repeaters that enable high-rate quantum communications between distant trapped-ion quantum computers in a network. The group works to consider an architecture for a repeater based on dual-species trapped-ion systems. The results bolster the case for near-term trapped-ion systems as quantum repeaters for long distance quantum communications. Read more in the published paper.

Image
A recent paper was published in the APS Physical Review A by the Guha lab, associated with the Center for Quantum Networks, and was selected as an Editor's Suggestion. The work was funded on the NSF Convergence Accelerator program in collaboration with University of Maryland. The paper discusses trapped-ion based quantum repeaters and was led by Wyant College Ph.D. student, Prajit Dhara, advised by Dr. Saikat Guha and co-advised by Dr. Kaushik Seshadreesan, Assistant Professor at Univ. of Pittsburg. Accordi

General architecture of a repeater node based on DSTI modules to support entanglement distribution protocols based on mode multiplexing. The lines denote optical fibers.

2) Holographic Curved Waveguide Combiner for HUD/AR with 1-D Pupil Expansion

Date Published: February 22, 2022

Dr. Pierre-Alexandre Blanche and OSC alumnus, Craig Draper, present optical ray tracing as well as an experimental prototype of a curved waveguide combiner with pupil expansion for augmented reality (AR) and mixed reality (MR) glasses. The curved waveguide combiner takes advantage of holographic optical elements both for injection and extraction of the image to correct the aberrations introduced during the propagation of light inside the waveguide. The holographic curved combiner presented has a cylindrical outer radius of curvature of 171.45 mm with a field of view of 13° (H) × 16° (V) at a viewing distance of 1 cm with a 5 × horizontal 1 dimension pupil expansion for an eyebox of 6.2 mm × 42.7 mm. Download the published article.

Image
Simulated image seen in radiance space through a waveguide at the expanded exit pupil without (a) and with (b) propagation correction

 Simulated image seen in radiance space through a waveguide at the expanded exit pupil without (a) and with (b) propagation correction.

3) Assembly of Multicomponent Structures from Hundreds of Micron-Scale Building Blocks Using Optical Tweezers

Date Published: August 17, 2021

The fabrication of three-dimensional (3D) microscale structures is critical for many applications, including strong and lightweight material development, medical device fabrication, microrobotics, and photonic applications. While 3D microfabrication has seen progress over the past decades, complex multicomponent integration with small or hierarchical feature sizes is still a challenge. Dr. Jeffrey Melzer and Dr. Euan McLeod have precisely fabricated 3D microstructures from two types of micron-scale building blocks linked by biochemical interactions using an optical positioning and linking (OPAL) platform based on optical tweezers technology. It is anticipated that OPAL will enable the assembly, augmentation, and repair of microstructures composed of specialty micro/nanomaterial building blocks to be used in new photonic, microfluidic, and biomedical devices. Read the published article.

Image
Optics Site Image

 Large-scale microassembly using optical tweezers. a Scanning electron microscope (SEM) image of a 3D periodic 8 × 8 × 7 simple cubic lattice consisting of alternating biotin-coated and streptavidin-coated 1 μm polystyrene spheres. Inset: 3D layout of the two components. b SEM image from (a) with overlaying spheres in red along the front, side, and top faces of the structure, which are used to estimate a mean absolute 3D positional error of 180 nm. c High-magnification SEM image of a corner of a 6 × 6 grid of alternating biotin- and streptavidin-coated 1 μm spheres. The streptavidin-coated spheres exhibit a rougher surface. d–f Optical microscope images of the full structure in (c). The biotin-coated spheres are green-fluorescent, while the streptavidin-coated spheres are red-fluorescent. The brightfield image is shown in (d), and the fluorescence image obtained using a FITC filter set is shown in (f). A mixed modality image (brightfield + fluorescence) is shown in (e).

4) High-Speed Lens-Free Holographics Sensing of Protein Molecules Using Quantitative Agglutination Assays

Date Published: August 17, 2021

The fabrication of three-dimensional (3D) microscale structures is critical for many applications, including strong and lightweight material development, medical device fabrication, microrobotics, and photonic applications. While 3D microfabrication has seen progress over the past decades, complex multicomponent integration with small or hierarchical feature sizes is still a challenge. Dr. Jeffrey Melzer and Dr. Euan McLeod have precisely fabricated 3D microstructures from two types of micron-scale building blocks linked by biochemical interactions using an optical positioning and linking (OPAL) platform based on optical tweezers technology. It is anticipated that OPAL will enable the assembly, augmentation, and repair of microstructures composed of specialty micro/nanomaterial building blocks to be used in new photonic, microfluidic, and biomedical devices. Read the published article.

Image
Optics Site Image

A look at the setup of the new QLAB sensor demonstrating its ability to detect Brownian motion in a liquid sample without blur.

5) How a Tiny Loop of Light Could Help Fight COVID (And So Much More!)

Date Published: June 22, 2021

FLOWER: How a Tiny Loop of Light Could Help Fight COVID-19

At the Wyant College of Optical Sciences’s Little Sensor Lab, researchers are building sensors that have three key advantages: They can detect low concentrations of substances, provide results in 30 seconds or less, and they don’t need to label or amplify the substance they’re trying to detect. But perhaps the best part? They may be helpful in detecting and treating COVID-19, cancer and scores of other harmful or deadly contaminants.

This technology could be useful in medical diagnostics, environmental health monitoring and detecting chemical threats, said Judith Su, Ph.D., assistant professor of optical sciences and biomedical engineering. In fact, it shows such promise that it was awarded a $1.82 million grant from the National Institutes of Health.

Read the full article

Image
Optics Site Image

Judith Su, an assistant professor of biomedical engineering and optical sciences, runs the UArizona Little Sensor Lab, where researchers are finding ways to use a one-of-a-kind technology to address some of the medical community's most pressing problems. (Photo: Chris Richards / University of Arizona)

Photonics Faculty

Matthew Eichenfield

SPIE Endowed Chair in Optical Sciences Associate Professor of Optical Sciences

Linran Fan

Assistant Professor of Optical Sciences

Saikat Guha

Nasser Peyghambarian Endowed Chair in Optical Sciences Professor of Optical Sciences Director of the Center for Quantum Networks

Khanh Kieu

Associate Professor of Optical Sciences

Masud Mansuripur

Chair of Optical Data Storage Professor of Optical Sciences

Euan McLeod

Associate Professor of Optical Sciences

Stanley Pau

Professor of Optical Sciences

Nasser Peyghambarian

Chair of Photonics and Lasers Professor of Optical Sciences

Tsu-Te Judith Su

Assistant Professor of Optical Sciences