The creation of a matter-wave interferometer can be achieved by loading Bose-Einstein condensed atoms into a crystal of light formed by interfering laser beams. By translating this optical lattice in a specific way, the traditional steps of interferometry can all be implemented, i.e., splitting, propagating, reflecting, and recombining the quantum wavefunction. Using this concept, we have designed and built a compact device to sense inertial signals, including accelerations, rotations, gravity, and gravity gradients.