This courses provides the background, theory, and practice of how to design, analyze, and test high performance infrared imaging systems. The course is presented in three sections. The first section provides a brief review of the basic mathematics, radiometry, and diffraction theory needed to be successful in imaging system performance calculations. The second section includes a detailed look at all the components that make up an electro-optical or infrared imaging system to include targets, atmospherics, optics, detectors, electronics, signal and image processing, displays and the human visual system. The student is taught how to calculate the component resolution (modulation transfer function) and sensitivity for each of the components. Modulation Transfer Functions and optical throughput along with signal-to-noise is determined for each imaging system component. The student is taught how to determine whether a system is turbulence-limited, detector-limited, diffraction or aberration-limited, display-limited, or human vision system limited. The third section teaches the student how to combine all the component transfer functions and throughput (with infrared radiation) to determine the imaging system contrast threshold function. This system CTF is used in the design of imaging systems to accomplish some object discrimination task (e.g., detection, recognition, or identification). System theory, laboratory performance, and field performance are covered. These concepts apply to both infrared and electro-optical imaging system performance.
Instructor(s)
- Ronald Driggers