Research in photonics at the Wyant College of Optical Sciences ranges in scope from fundamentally new tools, such as small-footprint, high-throughput multiphoton microscopes, through exceptionally high-power semiconductor lasers, to components and systems for next-generation optical networks for both the Internet and data centers, and into consumer equipment like 3-D displays. New areas are constantly explored by our nine faculty in the specialty, as photonics becomes more pervasive in our lives. Communications, displays, medicine, manufacturing and imaging are just a few applications.
The re-writable hologram of Albert Einstein shown as a 2-D figure was created with state-of-the-art technology developed by our group. Professor Masud Mansuripur, provoked considerable controversy by reminding the physics community that the commonly used Lorentz force law for charged particle motion is not relativistically invariant when applied to magnetic materials in the presence of an electric field; the suggested remedy is to return to an alternative force law proposed by Albert Einstein in 1908.
To view past updates, see the Research Updates Archive.